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Finite Number Systems 
Friday, October 27, 2017 

Jim Riley 
 
Abstract:  We’re accustomed to infinite number systems, such as the integers and the real numbers, but 
there are finite number systems with many of the same properties. 

We’ll define a commutative ring, which is a number system with the same properties as the integers. Of 
course, the integers are a commutative ring. 

We’ll define a field, which is a commutative ring where every non-0 element has a multiplicative inverse; 
examples of fields include the rational, real, and complex numbers. 

We’ll explore Z12, a finite commutative ring with 12 elements that uses modular (“clock”) arithmetic 

We’ll explore Z7, a finite field with 7 elements. 

Z12  and Z7 aren’t unique. In fact, for every whole number n 2, there’s a finite commutative ring Zn. Also, for 
every prime number p, the commutative ring Zp is a finite field. 

Finally, we’ll look at some applications of modular arithmetic of the type used in Z12 and Z7. 
 
We’re all familiar with the integers, sometimes known as Z (after the German word zahlen, meaning 
“numbers”). The integers consist of the whole numbers 0, 1, 2, 3, 4, ... together with the negative numbers 
-1  –2, –3, –4, .... And we all know how to add, subtract, multiply, and divide in the integers – although 
dividing one integer by another doesn’t always give another integer, which is part of the reason why the 
integers aren’t the only game in town!
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To get a feel for how these operations work, let’s use the tables to find solutions for the equation 
3 + 2x = 9 in this set: 

1. The equation says 2x can be any number that you can add to 3 to get 9. 
2. According to the addition table, that means 2x = 6. 
3. Therefore x can be any number such that multiplying it by 2 gives 6. 
4. The multiplication table says 2x3 = 6 and 2x9 = 6, so the solutions are x = 3 and x = 9. 

Note that 3 would also be a solution to the same equation in our everyday numbers, but 9 certainly wouldn’t. 
 
Exercise: Use the tables above to find all the solutions you can for the equation 8x + 4 = 0 in Z12. 
  
From the addition table above, we can see that 0 is the additive identity in Z12, just like in regular arithmetic, 
and each of our 12 numbers has an additive inverse: 

 1 + 11 = 0, so 1 and 11 are each other’s additive inverse 

 2 + 10 = 0, so 2 and 12 are each other’s additive inverse 

 3 + 9 = 0, so 3 and 9 are each other’s additive inverse 

 4 + 8 = 0, so 4 and 8 are each other’s additive inverse  

 5 + 7 = 0, so 5 and 7 are each other’s additive inverse 

 6 + 6 = 0, so 6 is its own additive inverse 
Following the notation we’re used to in the integers, we could say 1 = –11, 11 = –1, 2 = –10, 10 = –2, etc. in 
Z12. 
 
From the multiplication table for arithmetic mod 12, we can also see that 1 is the multiplicative identity, 
again just like in regular arithmetic. 
 
We’ve just verified that Z12 has most of the properties of a commutative ring. It would be tedious to check 
that the addition and multiplication are associative, and that the distributive property holds, but I promise 
you that Z12 really does satisfy those requirements as well, which means Z12 is in fact a commutative ring! 
Unlike all the other commutative rings we’ve discussed, though, Z12 is a 
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So sure enough, Z7 is a field, even though it has only 7 elements! In fact, if p is any prime number, Zp is a 
field; because of that, it’s sometimes denoted by Fp instead of Zp. There are other types of finite fields as 
well, but the number of elements in a finite field is always a power of some prime number. 
 
Exercise: Use the multiplication table above to calculate 57 in F7. Do the same with 57. Do you see a 
pattern? If you’re feeling ambitious, verify that the pattern holds for every element of F7. (In fact, in any finite 
field with p elements, where p is a prime, it’s true that an = a for every element a of the field.) 
 
Historical note: Finite fields are also known as Galois fields, in honor of the French mathematician 
Evariste Galois (1811–1832) who discovered them. Galois (prounounced Gal WAH) made profound 
contributions to algebra – in fact there’s a whole branch of algebra called Galois theory that’s based on his 
work – before his tragic death in a duel at the age of 20. He filled a notebook with his ideas the night before 
the duel, just in case. 
 


