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Finite Number Systems 
Friday, October 27, 2017 

Jim Riley 
 
Abstract:  We’re accustomed to infinite number systems, such as the integers and the real numbers, but 
there are finite number systems with many of the same properties. 

We’ll define a commutative ring, which is a number system with the same properties as the integers. Of 
course, the integers are a commutative ring. 

We’ll define a field, which is a commutative ring where every non-0 element has a multiplicative inverse; 
examples of fields include the rational, real, and complex numbers. 

We’ll explore Z12, a finite commutative ring with 12 elements that uses modular (“clock”) arithmetic 

We’ll explore Z7, a finite field with 7 elements. 

Z12  and Z7 aren’t unique. In fact, for every whole number n 2, there’s a finite commutative ring Zn. Also, for 
every prime number p, the commutative ring Zp is a finite field. 

Finally, we’ll look at some applications of modular arithmetic of the type used in Z12 and Z7. 
 
We’re all familiar with the integers, sometimes known as Z (after the German word zahlen, meaning 
“numbers”). The integers consist of the whole numbers 0, 1, 2, 3, 4, ... together with the negative numbers 
-1  –2, –3, –4, .... And we all know how to add, subtract, multiply, and divide in the integers – although 
dividing one integer by another doesn’t always give another integer, which is part of the reason why the 
integers aren’t the only game in town! 
 
Here are the key properties that define how things work in the integers: 
 
1. The integers are closed under addition and multiplication; that is, the result of adding or multiplying two 
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To get a feel for how these operations work, let’s use the tables to find solutions for the equation 
3 + 2x = 9 in this set: 

1. The equation says 2x can be any number that you can add to 3 to get 9. 
2. According to the addition table, that means 2x = 6. 
3. Therefore x can be any number such that multiplying it by 2 gives 6. 
4. The multiplication table says 2x3 = 6 and 2x9 = 6, so the solutions are x = 3 and x = 9. 

Note that 3 would also be a solution to the same equation in our everyday numbers, but 9 certainly wouldn’t. 
 
Exercise: Use the tables above to find all the solutions you can for the equation 8x + 4 = 0 in Z12. 
  
From the addition table above, we can see that 0 is the additive identity in Z12, just like in regular arithmetic, 
and each of our 12 numbers has an additive inverse: 

 1 + 11 = 0, so 1 and 11 are each other’s additive inverse 

 2 + 10 = 0, so 2 and 12 are each other’s additive inverse 

 3 + 9 = 0, so 3 and 9 are each other’s additive inverse 

 4 + 8 = 0, so 4 and 8 are each other’s additive inverse  

 5 + 7 = 0, so 5 and 7 are each other’s additive inverse 

 6 + 6 = 0, so 6 is its own additive inverse 
Following the notation we’re used to in the integers, we could say 1 = –11, 11 = –1, 2 = –10, 10 = –2, etc. in 
Z12. 
 
From the multiplication table for arithmetic mod 12, we can also see that 1 is the multiplicative identity, 
again just like in regular arithmetic. 
 
We’ve just verified that Z12 has most of the properties of a commutative ring. It would be tedious to check 
that the addition and multiplication are associative, and that the distributive property holds, but I promise 
you that Z12 really does satisfy those requirements as well, which means Z12 is in fact a commutative ring! 
Unlike all the other commutative rings we’ve discussed, though, Z12 is a 
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So sure enough, Z7 is a field, even though it has only 7 elements! In fact, if p is any prime number, Zp is a 
field; because of that, it’s sometimes denoted by Fp instead of Zp. There are other types of finite fields as 
well, but the number of elements in a finite field is always a power of some prime number. 
 
Exercise: Use the multiplication table above to calculate 57 in F7. Do the same with 57. Do you see a 
pattern? If you’re feeling ambitious, verify that the pattern holds for every element of F7. (In fact, in any finite 
field with p elements, where p is a prime, it’s true that an = a for every element a of the field.) 
 
Historical note: Finite fields are also known as Galois fields, in honor of the French mathematician 
Evariste Galois (1811–1832) who discovered them. Galois (prounounced Gal WAH) made profound 
contributions to algebra – in fact there’s a whole branch of algebra called Galois theory that’s based on his 
work – before his tragic death in a duel at the age of 20. 


